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IO0L&RD

This effort had as its purpose the study of:

(a) Randomization Tests of Statistical Inference. These tests

may be utilized to minimise the risk of biased results resulting from

non-random sets of failure data. Since, generally, reliability

estimations must be based upon the assumption that the occurring

failures are random in nature, such tests of randomness may be con-

sidered as a necessity.

(b) Statistical Decision Functions. These functions may be

used to determine the advisability of terminating reliability tests in

the presence of relatively sparse data. From decision functions, risk

functions can be developed which may be capable of mathematically

equating potential costs to each possible alternate decision (accept,

reject, or continue test).

In the area of randomization tests the contractor has investi-

gated and modified (for reliability test purposes) two testing procedures,

the runs test and the serial correlation test.

Of the two, the runs test is the easiest to apply (can be

implemented using a simple table). The runs test can also be used to

determine whether or not a modification or redesign of an equipment has

resulted in a significant improvement in reliability.

The serial correlation test, although more involved than the

runs test, can readily be applied if one Is willing to set up and solve

a series of elementary statistical relationships.

In the area of statistical decision functions the contractor has

iii



performed a literature search and analysis of all available data an

the subject. The conclusion was reached that it my well be possible

to develop a risk function for reliability test purposes. However,

before this is accomplished more knowledge concerning appropriate

decision functions and their practical ramifications must be acquired.
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ABSACT

This is a study of several randomisation tests of statistical

inference. For testing the rzidoemess of a sequenco of obeervations,

the Runs Test and the Serial Correlation Test are discussed.

Some aspects of decision theory are discussed. Among the

topics considered are definitions, basic principles, the pay-off matrix,

utility theory, and principles of choice. The report concludes with

critical comments on utility theory and principles of choice.

vii
i



PDA )-TD-September, 1962

TABLM OF 0TTS

page
Introduction . .. .. .. .. .. .. .. .. .. .. .. . .. 1

Discussion . . . . . . . . . . . . ..... . . . . . . 2

1. Randomiuation Tests

a) andom Sampling• . .......... . . . .. 2

aSerial CorrelationTest . . . . . ...... 9

2. Statistical Decision Theory

a) Definitions and Basic Principles . . . . . . . 14b) Utility. • .. . . . .. . . . 16

c) The Pay-Off Matrix ..... ......... 18
d) Principles of Choice. ......... . . . . 19
e) Bayes rstimate and Sequential Decision Problems 21
f) Critical Comments an Utility Theory and

Principles of Choice .......... 23

Conclusions. . . .................... . 27

Bibliography ....... ........................ ..... 29

'iii



RADC-TDR-62-499 September, 1962

Development of Non-Parametrio Techniques
to the

Reliability Testing of Air Force Ground Electronic Equipment

INTRODUCTION

Randomisation tests are necessary to avoid biased results when

the experiment (as is almost always the case) is based on conditions of

random sampling. If there is any slight suspicion that the observations

do not form a random set 'when taken over some time interval, it is: im-

portant to test for randomness before applying any statistical technique.

The Runs Test and the Serial Correlation Test, which can be usci. t:o

determine a lack of randomness in sequences of observations if Mch a

lack exists, are discussed. These tests are nonparametric since they can

be used when the underlying frequency is unknown. Examples are: given which

illustrate how the Runs Test can be used to test for the identiy pof two

distributions.

The works of von Neumann and Morgenstern (19", 1947) ax4:.Wald

(1950) concerning the theory of games and the theory of statistical

decisions stimulated much of the basic research in decisiov theory during

the last decade. In the second part of this report it is our purpose to

discuss some of the basic concepts of this theory. Deoision functions

can often be used to determine a rule for carrying out the reliability

experimentation and for making a terminal decision. In this report, we

will point out the difficulties encountered in bridging the gap between

theory and practice.
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DISCUSSION

1. Randomisation Tests

a) Random Sampling

A set of elements which have a common measurable or observable

characteristic is usually called the population or the universe. A

subset of these elements, chosen in any manner, is called a sample of

the population.

One type of population consists of elements or observations

which actually exist. Examples of this type of universe might be&

(a) all the registered voters of Philadelphia and (b) the seven members

of the Board of Sducation of a certain city. In studying some

characteristic of the voters of Philadelphia, it would be impractical

to contact every voter whereas it would be reasonable to contact only

a subset or sample of this population. Usually it is possible to obtain

adequate information for most purposes from relatively small samples.

In the case of the Board of Education members, because of the small

number, it probably w'ould be easy to measure every element (individual)

of the population. Both of the above were illustrations of finite

populations. A second type of population, usually involved in experi-

ments, is obtained if we consider all the hypothetical measurements c:ý

the weight of an object. Also, the population consisting of all the

hypothetical tosses of a die in a infinite population since "all

possible tosses" can never be made.

The purpose of a statistical test is to make some generalization

[the meantime between failures is z houwi about a population from a

subset or sample of the population. The way we choose this sample plays
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an important part in the degree of oqsfidnoe. which we ca put on the

results of the experiment. If pow individual elements of our popula-

tion are more likely to be chosen than others, then the sample is certainly

biased. Whether the .population is finite or infinite, we would like every

element of the population to have an equal chance of being inolblded in

the sample. A sample satisfying this condition is called a random sample.

This definition implies that some device must be used so that selection

of elements of the sample be left to chance. However, in reliability

tests aimed at verifying a mean time to failure, after each failure, the

time to failure is recorded, the equipment is repaired and then put back

on test. The assumption is that failure i and failure i+1 are independent.

It is important to test this assumption since most techniques for testing

statistical hypotheses assume a random set from some population. In

particular, in the median and other tests which involve sequences of ob-

servations, it is assumed that these sequences are random. Therefore,

before applying these statistical methods, some methods must be used to

test the randomness of the sequence. The following two sections discuss

such techniques.

b) The bun Test

One of the most useful and easiest to apply tests of the random-

ness of a sequence is the runs test. In order to illustrate the use of

this test consider the following set of times to failure of a certain

electronic equipment gathered over a period of several months:

(I) 31, 27, 37, 41, 32, 36, 28, 23, 41, 30, 37, 24, 19, 26, 39,

35, 25, 28, 10, 23.

We then found the median. In this case, since we have 10 elements above

and including 31 and 10 elements below and including 30, the median is

0.1Q. We now replace each mean time between failures by + if above the



median and by - if below the median of 30.5 This yields the following

sequence:

A run is defined as a sequence of identical letters or symbols which

is followed and preceded by different letters or no symbols at all.

In the above sequence of + and - signs, we find that we first have a

run of 1, then another run of 1, and then a run of 4, next a run of 2

etc. for a total number of 12 runs. This total umber of runs which we

will call Lris often a good indication of a possible lack of randomness.

For example, %r would equal 3 if the twenty elements of sequence (II)

were arranged as follows:

This could mean that we have too few runs, a total number much smaller

than that expected under the randomness hypothesis. In another exzslple,

Lr = 18 if the twenty elements of sequence (II) were arranged in some

alternating or almost alternating pattern such as:

(IV) +-+-+-+-++-+-+-+-+--

This probably means that we have , a number much larger

than we could expect by chance. In either of the last two illustrations

we probably would reject the hypothesis of randomness.

In order to determine whether %r, the observed total number of

runs, is too few or too many, let us consider an arrangement of n1 letters

or symbols of one kind and n 2 letters or symbols of the second kind. If

we assume that this sequence is a random sample from a given population,

it is possible to obtain the sampling distribution of the variable u."

for repeated random arrangements by the laws of probability. These

probabilities have been used to construct tables which enable us to
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test whether a sample value of t is unusually small or large. The following

are portion@ of tables complied for several levels of significance which

enable us to make exact tests when nI and n2 are small (less than 20)s

TABLE I-Critical values off in the Runs Test for r.05 and

V 5 (Ref. 6)

n2 5 8 10 12 14 16 is 20

2 2 2 2 3 3 3
S.72 7 7 7 7_7 7

12 3 3 4 4 4 5 5
5 9 10 11 11 11 11 11 11

4 5 6 6 6 7 7
8 13 14 15 15 16 16 16

6 7 7 8 8 9
10 15 16 17 18 18 19

7 8 9 9 10
12 181 19 20 20 21

9 10 10 11
14 20 21 22 23

11 11 12
16 22 24 24

18 12 13
12_ 25 

26

20 14

The values listed are such that a number less than or equal to the

Y.025 value (in the upper left hand corner of each rectangle) will ooour not

more than 2j% of the time; and a number greater than or equal to kr 975

value (in the lower right hand corner of rectangle) will occur not more

than 2.5% of the time.
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1 (1):

Suppose we have the following mot of times between failure

of a certain electronic equipment: 31, 27, 37, 41, 32, 36, 28, 23,

41, 30, 37, 24, 19, 26, 39, 35, 25, 28, 40, 23. We wish to test the

randomness of this sequence of observations at the 5% level of sig-

nificance.

As shown on page 3, the median of this sequence is 30.5.

Designating a mean time between failures above the median by + and mean

time between failures below the median by -, the above sequence becomes:

The total number of runs in this sequence is ý= 12. The hypothesis
H that we wish to test is that +'s and -'a ocmur in random order. The

0

alternate bypothesis H1 is that the order of +'s and -1s (or the total

number of runs) is not random. We use a two tail test since we cannot

p,.Predict the direction of the deviation from randomness. In this case,

n=n 2 =10 and theVr=12. From Table I, we see that the number 12. lies

between r.025=6 and Ur.975=16 and therefore we do not reject the bypothesis

of randomness at the 5% level of significance.

Table I can be used when n1 and n2 are equal to or less than

20. More extensive tables are available but i '. has been shown that if

n1 and n2 are greater than 10, then the sampling distribution 6Of. is

approximately normal with the mean and standard deviation given by the

.'following:

(A) = n'l7n2  +

A , 2n1,n (2n+Tn2-j-nl-2)
(B) r .=

*14-Pe (n1+n2-1)
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We wish to test the randomess of a sequenae of 50 observations

if n1=25 and ni=25 and the number of runs is 17, at the 5% level of

significance.

So•luto

substituting in formulas (A) and (B) give:

,,Lr- (2)(2S)(25) + 1 = 26
50

(122Q W = 12.2 =(3-5)

(C) The formula

tells us the number of standard deviations a particular Z is from the mean.

Substituting in this formula (C) we obtain

3.5 3.5

Since, in a normal distribution, 95% of the caseslie between -1.96C-

and +1.96C from the mean, we reject the hypothesis of randomness. In

particular 26- (1.96) (3.5) or 26 7 is the region of acceptance of the

hypothesis of randomness at the 5% level.

The runs test can also be used to determine whether or not two

random samples are from populations having the same frequency distribu-

tions. This is useful in testing whether or not a modification or a re-

design of equipment has resulted in a significant improvement. The

following examples will illustrate this technique.

Suppose 8 observations of the times to failure of an equipment

have been recorded (sample A) and after a redesign, 10 new measurements
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are muade (sample 8)1

(A) 23, 32, 51, 43, 45. 33, 56, 37

(B) 38, 27, 47, 38, 40, 55, 61, 49, 43, 52

Is this apparent improvement f mean of 40.3 in A to a mean of

45 in V a significant one at 2J% level?

We first order the 18 observations of samples A and B into a

single sequence according to sasi. We order by a random device those

observations which occur more than once. fin alternative method is to

break the ties in all possible ways and note the resulting value of %,.

If all these values of L•produce significant results or all values of %-

produce results which are not significant, then the ties present no

difficulty.J We underline the observations from Sanple A to preserve

their ideptity when combined with tho observations of sample B:

21t 27P 329 Mv , 37, 9 38P 40, AJ, 43P Alt 47, 49t dU, 529

55, 5, 61

This arrangement has 12 runs. The hypothesis being tested

is that the two samples A and B have the same distribution (that is,

the redesign has resulted in no improvement). A significant improve-

ment would result in very few runs. This is because in the single

ordered sequence, a definite improvement would mean that the majority

of the measurements in sample B would fall in the right pNrtion of'

the sequence and thus reduce the umber of runs. This indicates the

use of a one-tailed test. We can use Table I at the .025 level. We

see that, for n1=8 and n2 10 and U--12, from this table that 1275 and

therefore we do not reject the hypothesis. The hypothesis would be

rejected (indicating a definite improvement) only if e(were less than
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or equal to 5.

Sam as exmle (3) with samples A and B as follows:

(A) 12, 25, 43, 19, 24, 46, 18, 44

(B) 29, 11, 49, 56, 61, 36, 58, 53, 38, 72, 53,64

The combined sequence ordered according to size is: 11, 2,

i1, 12, 2A1, Zi, 29, 36, 38, Alt "P A6, 49, 53, 559 56, 58, 61, 64, 72

Here n=8 and n=12, and tf=5. From Table I again, we note

that 5< 6 and therefore we reject the hypothesis of no improvement.

c) Serial Correlation Test

A second test which is useful for testing the randomness of a

sequence is the serial correlation test. If we are studying a sequence

of observations which are truly random, we would not expect a relationship

between two consecutive elements. The probability that the smallest and

largest elements will be consecutive is the amwe as the probability that

the two largest or two smallest-or, in fact, any two elements will be

consecutive. Therefore, if we pair each element with it.s successor and

ordinary techniques of correlation are used, we would expect that perfect

randomness would result in a correlation of zero.

If our sequence consists of the n elements X1, 2, X3 .... X.i...X%1n

then the successor of X, is X2, of 12 is X,, and X i Xis 1 for i=1,2,3,...,

n-1 and we also define that the successor of Xn is X1. The pairings of

the two variables X and Y which we are to study are as follows:

x X1ý2 .... Xi .. X

Y, Y2 Y3 .... Yi+1 .... x1
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If the correlation coefficient is clsie to +1 or to -1 we probably would

reject the hypothesis of randomness (since +1 represents perfeot positive

correlation and -1 represents perfect negative correlation) and if the

correlation is zero or near zero, we probably would accept the hypothesis

that the sequence is random since this would indicate no or almost no

relation between X. and Xi÷1. It is possible to obtain a sampling dis-

tribution of the serial correlation coefficient by the laws of probability.

Even thoukh: the formula for this correlation coefficient is:

n

'5 x xi÷1 -n

I" n S xS

1it is necessary only to consider:

CD) R- 4E since X, ,.S andS are unohanged*6&r the"*I1 xi Y ..

ious perimtation.. •t-has been shown that an a~proximatioe' of the

distribution. of R is nUoxmi"ilwith a.i• and stanard deviatioz.a•i* ollows:*

(F') +' -,":n' ÷ S4"-4(nS) 2.

(H) The formula Z = gi~es us the number of standard

deviations a particular serial correlation coefficient is from the mean

and therefore wili enable us to reject or accept the hypothesis at a

given level of confidence. As n becomes larger the computation involved

become laborious. However, modifications, as will be illustrated in
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exaple (6) below, often will simplify these omputation.s.

Using the serial correlation coefficient method, test the

following sequence of 12 members for randomnoess

5, 17, 18, 8, 19,13, 9, 1, 3, 16, 11, 2 at the 5% level of significance.

The given sequence produces the folloving pairings:

x: 5 17 18 8 19 13 9 1 3 16 11 2

y: 17 18 8 19 13 9 1 316 11 2 5

n

We first find R: f xi . xi+.1 = (5) (17) + (17) (18) + (18) (8) + .... +

i=t

(2) (5) = 1319

Then, using formula (G) we find S13, S2 , S, and S4:

S1 = 5+17+18+ .... +2=122

S2 = (5)2+(17)2+(18)2++....(2)2=1704

S3 = (5)3+(17)3+(18)3+.....+(2)3=26,630
S,. = (5)4+(17)4+(18)4+ .... +(2)4=,438,936

Nov (E) gives R = (122)2_174 1198 and (F) produces:C.=/~~11m m
(R =/(Z2Ih)(4U)60 + (132)025)k1 - (119)8)2

= 1224,062 + 1,228,230 - 1,435,204

( R= 17,088s 131

and finally:

Z= 1319-1198 : .93

r 131

At the 5% level of significance, a Z7/1.65 is required to reject
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the Ihlpthesis and therefore the hypothesis of rndomesu is accepted.

Again, using the serial correlation technique, we wish to test,

at the 5% level of significance, the following sequence for randomness:

6.74, 6.72, 6.77, 6.79, 6.75, 6.80, 6.82, 6.88, 6.92, 6.89

Sol2tio

Since the result of the teat is not influenced by adding the same

constant to each term of the sequence or by maltiplying each term, of the

aequence by the same constant, we add -6.80 and then isultipl"y. eýn term

.,of the sequence ty 100 to produce to following simpler sequenoez -.6, -8,

S-3, -'1, -5, 0, +2, +8, +i2, +9. The solution now follows as in. the

preceding eiample

1: -6 -8 -3-1 -5 +0 +2 +8 +12 +9

Y +9 -6 -8 -3-1 -5 0 +2 +8 +12

R- (-6)(+9)+(-4)(-6)+(-3)(-a)+....+(+9)(12) = 246

S= -6 -8 -3 -1+.-...+9 = 8

2= (.6)2 + (_8)2 + (3)2 +... +( 9)2= 428

S3 = (_6)3 + (_a)3 + (-3)3 ... +( 9)3= 2096

S = (-6)4--+ (-$)"' + (-4)4+*. +( 9)4= 37,508

= 6 = -40.4
9

6R= - Si65+ 6976 (40.22
72

SR = 116186 + 969 - 1,632 =

6 R= 415,523 = 125

again, finally

Z = ?,id.•= All" = 2.3125 125
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Therefore, minoe the probability of obtaining an R of this sime or

greater is approximately .011, we reject the hypothesis of randomness.

When we correlate each member with its successor as in the above

problems, this is known as aerial correlation with lag 1. The test in

applied in the usual manner if amy other lag k is used.

Solve problem (5) using the runs technique

Solution

In this problem the median is 10. Using a + sign to indicate an

element above the median and - sign to indicate an element below, the

sequence becomes:

and Vf, the number of runs, is 7. Using Table I with n = n2 = 6, we see

that 3(7<10 and therefore we accept the hypothesis of randomness at 5% level.

Solve problem (6) using the runs technique.

It is obvious that here the first 5 terms are above the median and

the last 5 terms are below the median. Thus the sequence becomes:

---- ++++ andV-= 2

From Table I, we see that V/= 2 does not fall between 2 and 9.

Therefore we reject the hypothesis of randomness.

It is clear from the last two examples that the computations involved

in the serial correlation test are much more involved than those for the

total runs test. For large n, the condition of normality is reasonable,

and then the serial correlation test may be more reliable.
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2. Sow Statistical Decision Theory

a) Definitions and Basic Principles.

A statistician, a technician, or any experimenter who makes

observations and measurements is finally faced with the problem of making

a decision on the basis of data available (usually incomplete). He may

have to decide between the acceptance or rejection of a given hypothesis.

In sequential testing, there are three possible decisions he might make,

namely: accept, reject, or continue testing. He may wish to estimate

the mean life to failure of a piece of equipment on the basis of the

results of an experiment. Or in other words, he must make a decision as

to which element Xo of a class X should be adopted as the estimate of the

true (but unknown) value of the parameter. These three familiar statistical

problems can be considered as special cases of the general decision problem.

Principles must be applied to aid in making the decision. In

any particular problem, the principle which will guide the decision

making will depend on the nature of the problem and often will involve

numerical constants which can only be estimated. A. Wald (Ref. 14)

developed the minimax principle, that is the principle of selecting a

rule which minimizes the maximum risk which could occur. This means

that the investigator anticipates the worst and acts accordingly. This

is frequently a vise action but has been criticized as being too

pessimistic, and several useful modifications of the minimax theory

have been presented. A second method originated by Bayes and used by

LaPlace is to assume that the a priori probabilities are all equal,

unless evidence to the contrary is available. According to the Bayes

principle, we choose a decision function (defined later) so as to

maximise the average gain. A further discussion of the various principles
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of choice will be found In seotion d.

Statistical decision theory and the theory of gaes are closely

related. Many statistical problems can be regarded as a two person game

in which the statistician plays against Nature. As an aid in making a

decision, the statistician performs an experiment whose outcome is Si(i:1,2,...n)

The set of all such possible outcomes will be called S, the sample space.

The set of all possible actions (or strategies) we call A. A .may consist

of only two elements a 1 , and a 2 as in the case where the decision -is to

accept or rejeat a hypothesis. A may contain three elements a 1 , a2, and a3

as in sequential testing .When the decision is to accept, reject or continue

testing. Also A may contain an infinite number of elements as in. the case

".of point or interval estimation. A statistical decision functip dis).a

'is a rule associating a possible action, a, with each possible, 6.•to. S.

For example, we wish to estimate the nown mean life of a population

..:using a random sample of sine n from the population., We can cohsiwir

.that a possibie action is a statement which says that the mean+ the

pooulation is the mean XI where one outcome is S= , X. .
i=1•

Here d(S) = X. A second ý .le would• be the test of a hypothesis .o/ 40

whioh requires 'the rejection of the hypothesis if 1645 and the. *4doetanoeýof
+. +'..•. , ~ ~ ~~~~. . . . + .. , . '...+ .. .• ..' . . • • .

the 'hypothesis if X -45. Here we have two elements in A name-V.p the

rejection of the hypothesis and a 2 the acceptance of the hypotheSIS. (This

is an arbitrary rule whichoould be modified readily to include a )rd action,

continue testing.) HeredA(s) a, f (i #*,..z and

and d(s)a i X, n) a

Considering the above two examples as a game, statistician versus nature, the
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decisions arrived at are often called pare decisions since the strategies

or actions taken are clear-out, that is for a given outcome a definite

action is prescribed. In other games, the decision imy depend on some

randomising device to select an action (decision) from an existing

probability distribution over a set of possible decisions. Such decisions

are called mixed decisions. In the game of Parohesi, the decisions are

of the mixed variety since the decision as b which marker to move

depends on the roll of a pair of dice.

b) Utility

The major problem of the statistician is how to choose between

alternate decision functions. Associated with each end result facing

the decision maker is a numerically measured value called utility and

in general he should make those decisions for which his end results would

have as large a utility as possible. This criterion may not necessarily

always be measured in dollars but other valuable considerations such

as time, reputation and even life itself may be applied.

Let us suppose the existence of a parameter spaceJfl consisting

of elementsutit i-1,r 3 ,.--.)For each L3 &there is a corresponding

probability distribution on S, the sample space. For a fixed %, a

certain action a Lpd(s.7will yield an end result (0-3 U)Now let

E devote the set of all possible end results e. Then v and d together

determine a probability distribution on E. If the experimenter can

determine which of two probability distributions he rer, then a

utility can be assigned to each of these. Therefore eachwand d will

have as utility, the utility of the probability distribution which they

determine. A second way of assigning a utility to a pair, (dZ-`) is

possible if a precise numerical loss L resulting from a given action
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can be detertined. This expected loss it often called the risk, regret

or inutility.

The preceding utility theory is obviously very general in

character and it is often extremely difficult to determine a utility in

these ways.

A simple illustration of how numbers ,my be assigned to basic

alternatives is given by Savage. He proposes the following problem.

On a given occasion a person faces the decision of whether or not to

carry an umbrella. For simplicity, only two possible states of nature,

future rain and future shine are considered. The possible consequences

are given by this table:

Rain Shine

inconvenience and inconvenience
wet feet and slight

Carry embarrassment

Don't Miserable bliss
Carry drenihing unalloyed

In other situations, the possible consequences of each act,

in each state, could be measured in dollars and in the preceding rain-

shine example, the following "income matrix" might be reasonable:

State

Rain Shine

Carry 4 5

Don't
Carry -10 10



- 18 -

c) The Pay-off Matrix

The two person game mentioned in the preceding section can be con-

sidered as the product of space X, all possible strategies of player I,

and of space Y, all strategies of player II. We define R(x,y) as a

function which gives the outcome r for each pair (x,y), x belonging to X

and y belonging to Y. In the theory of utility it has been shown that

with each r of our outcome space R there may be associated an M (x,y)

.called the pay-off function which mey be regarded as the monetary gain or

"utility" to player II (the decision maker). In the theory of, games there

Is a special class of games called two-person sero sum games. Thi is a

game in which the total payerf to the two players is Zero so that :iif the

pa y-off to player II is M(x;y) then the payoff to player I is -M(xy).

Our game can be considered as a matrix (MiJ) in which the columns

are the strategies of ti first player and the rows the strategies of

the second player;

".'•" Xl 1X 3 I~n• •
X1 .: . . .. . ,

y Ml l1' M21. M31 , ml•

S M1 2 M2 2 M3 2 .m

Y3 M 23 M33 1.3

II
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Independently, the first player selects the ith ooluvm and at

the same time the second player selects the Jth row. The pay-off to

the second player is the entry M of the matrix. The final choice of

a decision function must be based on some reasonable principle of choice.

Therefore, before illustrating the pay-off matrix, principles of choice

will be discussed somewhat further in the next section.

d) Principles of Choice.

In section (a) reference was made to several principles which

could aid the statistician in making a decision. Suppose for a given

problem we have been successful in assigning the utility U(d;c.) to each

decision function d for eachcA) inJV.. Then, as previously mentioned,

the most conservative principle of choice is the minimax criterion. Here

we choose the decision function so that the min U(d;ca) is the greatest.

We will illustrate this principle by devising a pay-off matrix as ex-

Splained in the preceding section.

y 0 4 5

Y2 0 3 6 3

Y3  2 3 3 2

Y4  4 1 4 3

The minimax principle states that we should choose the row for

which the least possible gain is a maximum. In the four rows in the

pay-off matrix above, the minimum gains are 0,0,2,1. Therefore we

choose strategy Y3 since regardless of what happens our minimum gain

will be 2 units.
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The second method mentioned in section (a) was the Buwoso principle

or as it is often called "the principle of insufficient reason." This

criterion asserts that if one is "completely ignorant" of the status of

nature, ve assume that the probabilities of all are equal and we choose a

strategy which maximises the average gain. In the pay-off matrix above,

the average gain (utility) for the four rows are U. There-

fore we choose Y".

The' mijim principle of Wald as previously noted is.unu3ý

"pessimistic since concentration is mede'on the worst possible Consequence

of aach act. A number of modifications have been devised to remove this

objection and Hurwis in 1951 suggested the selection of a number

o.O (0 Z 1) which he called the pessimism-optimism index. •.; each act

(or row) of our matrix let M1 be the maximum utility number and..'a, the
7

Imallest utility number,*. We now choose the row for which o(M1+Qo) m*

is'a maximum. . 'When O(O, this is equivalent to Wald's minimas prihciple.

In the previous example the four rows give 5o(, 69(, 3do+2(1-e) a = +2,.

3(41O ForQo= the 4 rows would give the values 2
4 4' 4' 4

and ' would be the strategy chosen. For ol- +, the results become

andI so that Y2 is preferred. And finally, forC=-3/4, :ve have

ad ji , so that Y2 is again preferred. It seems olear. that for
4 4'4 -4 4

ay'V() 5Y 2 is preferred.

Several other modifications involve the use of inutility, risk

or regret. Savage suggested that we minimise the maximum regret where

the regret is defined as the amount that must be added to the utility to

equal the maximum utility pay-off. Or it can be also described as the

difference between the pay-off for his actual strategy and the pay-off he
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vould receive if be knew in advance the state of nature (Player I ,strategy).

Symbolioallyrij=m:x Mi-Nij. Again, using the previou, matrix as an

example, the regret matrix associated with it is:

X1 X2 x 3 I

0 3 2 0

Y2 5 0 0 2

Y3  3 0 3 3

74 1 2 2 2

Here we have maximum regrets for the four rove 3, 5, 3, and 2.

Therefore we choose the act which minimises the maximum risk (regret)

which is Y4 1

The above example illustrates that the use of four different

principles of choice lead to four different decisions regarding the choice

of strategy. The minimax principle indicates the use of strategy Y3; the

Beyes principle leacb to the choice of yl; the modification developed by

Hurwics suggests the choice of Y2 as the preferred strategy; and finally

the regret principle indicates the use of strategy Y4 1

e) Payes Estimates, and Sequential Decision Problems

In order to estimate a parameteri,, the statistician performs an

experiment with outcomeSi where S is, as previously stated, the set of

all possible outcomes under consideration. An event Sa a subset of S wiljý

have a probability depending on 0 3
se• S) :•_r• (s)

S s6
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Then the decision function d(S)=a enables us to select an action a from the

set A of all possible actions. If we now assume that there exists a mumeri-

cal loss function LVd, w), then the expected value of this loss will be

defined by:
M(d,O.) =•L (d,(Z) PLO(S)

where dd(S) and the statistician obviously tries to minimize this expected

loss. An estimate which does minimise the expected loss is called a Bayes

eetitmate. ..

In the case of the binomial distribution where:

S@ = the probability of success Iased on the observation that the

n trials, and

P(x) = nCx .

?\(S) de = probability that e lies in the interval e to.ee4

f (x).= our estimate of the parameter 8
U

:E [ffn()' )5n(") a constan&7

L = expectation of lose

it is shown (Ref 1) that:

M) L C= fn W-0 X (e) dO

The 0 that minimises L in equation ( is the Bayes estimate..

A well known testing procedure is Wald's sequential probability

ratio test. After each observation the statistician must make a decision

whether to continue to make observations or to take final action (usually

accepting or rejecting a hypothesis). Let us suppose that we have to

decide between two hypotheses H1 and H12 of which the a priori probabilities

are g and 1-g respectively. We assume that there is no loss in accepting

the true hypothesis, and a loss e12 if we accept 12 when H, is true, and

a loss of,•"1 if ve accept R, when B2 is true. If g is small we of course
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accept H2 Esnle the risk R1= 4 2g is small. Also if g is large, 1-g is

small, and we similarly accept H1 since the risk V2 121(1-g ' ii small.

In order to determine the size of g for acceptance of H 2, the whole

interval o<-g C1 is divided into three subintervals I Io g g 1

where I 1(o g .q), I2 (l<g<g) and 13 (egi). Then if g belongs to 12

we continue to make observations, but if g belongs to 11 or 13 we stop

and take actions accept H2 if in Ii and accept H1 if in 13. If we take

n ob":rvations, the a posteriori probability of H1 is given by Bayes

Theorem (Ref. 5):

gn = g LPin '" (1-g) P2.-,7

where P1n is the probability of having n observations under H1 and P2a

the probability of n observations under H2 . On pp. 226-230 in Vol. 17,

Econometrica, general formulas are developed for j and , and also for a

number of special frequency distributions. In all cases, however, it is

very difficult to compute the operating characteristics involved in the

equations for i and S. In particular, the losses 412 and.,( 1 can only

be guessed at. In the case where the hypotheses H1 and H2 do not differ

much from each other the. approximations developed by Wald give fairly

close results.

f) Critical Comments on Utility Theory and Principles of Choice.

Utility theory (as stated before) is at the present still very

general in character. The constructing of the utility function U(d;ec-) is

extremely difhioult and highly subjective. However, even though some

statisticians assert that the theory is doomed from a practical standpoint,

our feeling is that it has given many new insights to statistical decision

theory and offers possibilities for great usefulness in the future. The



first obvious difficulty with utility theory is that numerical waues can

very seldom be assigned to the consequences of decisions. This usually

rests upon an infinity of paired comparisons. Some statisticians have

tried to avoid this difficulty by making a finite or a relatively few

paired comparisons. Verification then is based on these as well as on

the assumption that the utility function exists and is linear.

A number of authors have developed axiom systems in order to

have both a plausible set of consistent requirements based on idealised

human preferences as well as a procedure for proving the validity of

the utility assignments. A second difficulty arises as a result of these

axiom systems since the preferences or paired comparisons almost never

satisfy the stated axioms.

The principles of choice discussed earlier were Walds minimax

principle, Bayes principle, and modifications by Hurwics and Savage.

Serious criticisms, objections, and drawbacks have been cited by 'iny

statisticians to all of these. In criticism of Walds minimax principle

we quote from Savage (Ref. 12): "There is a general principle for finding

minimax actions when the number of states and mixed actions is finite,

but it leads in general to very extensive computations and is not

applicable at all when either of these numbers is infinite. Devices

for solving special classes of minimax problems are therefore much sought

after, and even now man of the most commonplace situations of statistics

lead to difficult minimax problems. Few, if any, new minimax solutions

of immediate practical importance have yet been found." A second serious

objection to Waldo minimax principle (as stated before) is based on

extreme pessimism, that is that we assume nature to be in the worst
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possible state.

The Savage modification, minimising the maximum regret, has been

criticized by Chernoff (Ref. 5) as follows:

"Unfortunately, the minimax regret (risk) criterion has several

drawbacks. First, it has never been clearly demonstrated that differences

in utility do in fact measure what one may call regret (risk). In other

words, it is not clear that the "regret" of going from a state of utility

5 to a state of utility 3 is equivalent in some sense to that of going

from a state of utility 11 to one of utility 9. Secondly, one may construct

examples where an arbitrarily small advantage in one state of nature out-

weighs a considerable advantage in another state."

Objections to the principle of insufficient reason have been

many. The first criticism is that the principle Is extremely vague and

may lead to contradictory results. A second objection is that the

principle is not strictly applicable for a person who has had any ex-

perience with the problem at hand since utility theory depends on a series

of preferences. A third criticism, much like the first, is that this

criterion is highly subjective. For example, if we are faced with a

real problem in decision making, we mest first list the mutually ex-

clusive states of nature. The objection here is that many such lists

are possible, and therefore will in general give different results.

Finally, the fourth and last principle of choice discussed was the

Hurwics modification of Wald minimax principle in an effort to make it

less pessimistic. The major objection to this modification is that it

involves the selection of an ( (considered as measuring the optimism of

the statistician 5layer 17in a game against nature 5layer 17 which
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is highly subjective and vague. A oriticism which applies not only to

the Ihrwios A modification but also to the other principles of choice

discussed is that they depend on some notion of complete ignorance. In

reality, however, the statistician usually is not in complete ignorance

of the true state of nature but has some idea of the various

possibilities.
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CONCLUSION

Since most methods used in statistics were derived upon the

basis of random sampling, it is essential that this condition be

satisfied in order that the results obtained by valid. In particular,

when the tests involve sequences of observations ordered with respect

to time, some test for randomness should be applied before methods based

on randomness are used. The Bans Test, discussed and illustrated in

section 1b, is one of the easiest to apply. The computations are simple,

the test is nonparametric (knowledge of underlying frequency function

not necessary), and can be used for both small (see Table I) and large

samples. The Serial Correlation Test, le, involves laborious computations'

for large n but for smaller n the arithmetic is not too time, consuming.

It should be pointed out that in the case of nonparametric tests there

is no established theory to determine what constitutes a "best" test.

The construction of utility functions and applications of decision

theory is diff'icult and subjective. However, we conclude that:

(1) A subjective risk function or decision function may well

be an optimum one if the individual designing it has knowledge of what

is important and what is not important to the purpose of the test. In

the particular instance of a risk function applied to a reliability test,

the Air Force (consumer) should have the prerogative of choosing which

parameters of a risk fmction are most important and of designing the

function to suit these.

(2) While decision functions in general are difficult to meni-

pulate due to the lack of a common denominator for different con-

sequences, in the particular case of a decision function for reliability



-2-

test purposes it may be found to be less difficult. This is due to the

fact that the majority of actions involved Wa be broken down to but two

prime factors, time and money, and the definition of the relationship

and relative importance of those should be the responsibility of the

consumer.

(3) It is conceivable that a decision function tailored to

reliability tests will be an eventuality. However, before this eventuality

may be realised, more knowledge of decision functions is necessary. At

this time little is known about possible applications of decision functions,

or their practicality of use. This area first came into prominence about

15 years ago, and significant work was accomplished. However, since that

time little more has been accomplished in this area than the study of its

more obvious fundamentals.



-29-

BIBLIOGR•APH

1. Arrow, K., Blackwell, D., and Girshik, M.A., "Bayes and Minimax Solutions
of Sequential Decision Problem," Roganjriga, 17 (1949), pp.
213-244.

2. Blaokwell, D., and Girshik, M.A., Theory of gmaes and Statistical Decisions,
New York, John Wiley & Sons, Inc., 1954.

,3. Browniee, K.A., §tatistical Theory and Methodolo&v in Scienea
B . . jeg, New York, John Wiley & Sons, Inc., 1960.i':ý,.".'.

•4. Brunk, H.D., An Introaduction to Mathematioal Statij-.'cs, Ne. :, Ginn &
Co., 1960.

.5.- Chernoff, H., and Moses L.E., Eleentary Decision 'Theorv, New. ..,6'k John
Wiley ,& Sons, Inc., 1959." .

6.DDixon, W.J., and Massey,. F.J., Intr6dution to Statistical AýAis, New
Yoi'i, Mocrtw-HiU, 1951.

7. Hoel, P.G., Introduction to Matmnati.al Statistics, New York, John Wiley
& Sons, Inc., 1".954."

8. Keeping, -.S. "Statistical Decisions," American Mathematics J"krthlv, 63
(19565, pp. 147-159.

9. Luce, R.D., and Haifa, H., Games and Decisions, New York, John. Wiley &
Sons, Inc., 1958.

10. Parzen, E., Modern Probabilitv Theor y Its Applications, New York,
John Wiley & Sons, Inc., 1960.

11. Savage, L.J., The Foundations of Statistics, New York, John Wiley & Sons,
!nc., 1954.

12. Savage, L.J., "The Theory of Statistical Decision," Journal of American
Statistical Association, 46 (1951), pp. 55-67.

13. Siegal, S., Nonparametrig Statistics for the Behavioral Sciences, New York,
McGraw-Hill, 1956.

14. Wald, A., Statistical Decision MhEr, New York, John Wiley & Sons, Inc.,
1950.


